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Abstract. Two kinds of virtual pions in the nucleus are discussed: delocalized pions forming a pionic
condensate and pions localized in the pionic clouds of individual nucleons in the nucleus. The pionic degrees
of freedom in nuclei may be efficiently verified in pion quasielastic knockout experiments A(e, e′π±)A∗.
First, the momentum distribution (MD) of collective pions has a bright maximum at K ' 0.3 GeV/c.
Second, the excitation spectrum of the recoil nucleus is concentrated at low energies Erec,A ' K2/2MA ≤
1 MeV. The results for the pion knockout from mesonic clouds of individual nucleons in nuclei are distinctly
different.

PACS. 25.30.Rw Electroproduction reactions – 13.60.Le Meson production – 13.75.Gx Pion-baryon in-
teractions

1 Introduction

On the basis of our previous papers [1,2] concerning an
intermediate-energy reaction of quasielastic knockout of
pions from the nucleon, we propose here a program of
direct experimental investigation of pionic wave functions
in nuclei by means of the quasielastic-knockout (QEK)
reaction

A(N,Z)(e, e′π−)A(N − 1, Z + 1, ω)

or
A(N,Z)(e, e′π+)A(N + 1, Z − 1, ω)

initiated by electrons with the energy of a few GeV and
mediated by longitudinal virtual photons with the squared
mass Q2 of 2–4 GeV/c. This reaction provides the oppor-
tunity to measure pionic momentum distributions corre-
sponding to various values of final nucleus-spectator ex-
citation energy ω. Such experiments are urgent now in
connection with the long-standing discussion of the pio-
nic condensate in nuclei [3,4]. Namely, we show that the
MD of delocalized pions in modern collective models [3,4]
based on the virtual excitation of the ∆-isobar are quali-
tatively different from the MD of pions localized on indi-
vidual nucleons in the nucleus. We expect that the spectra
of energies ω will also be different in these two cases —the
quasielastic knockout of a pion from the pionic cloud of
an individual nucleon in the nucleus and the quasielastic
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knockout of a pion from the nucleus’s pionic condensate.
The experimental energy resolution of 10 MeV would be
quite efficient here.
The background of QEK in microphysics is very rich.

The exclusive processes of the quasielastic knockout of
protons from the atomic nucleus by protons (p, 2p) or by
electrons (e, ep) at bombarding energies of a few hundred
MeV are well known [5]. They were used for investigations
of the MDs of nucleons on different shell model orbitals.
The shape of the MD for light nuclei proved to be very
sensitive to values of the nucleon shell model quantum
numbers nl.
In the QEK experiments, the coincidence technique is

used with the energy resolution ∆E ∼ 1 MeV, and the
interpretation of results is based on very simple binary
conservation laws

E(p) = E(p′) + E(k′) + Ebind, p+ k = p′ + k′, (1)

which are valid here, because energies of both an initial
bombarding particle and two final particles are high (the
impulse approximation [6]). In eq. (1), k is the momen-
tum of a virtual particle to be knocked out, Ebind its
binding energy; p and E(p) are the initial momentum
and energy of the bombarding particle, p′ and E(p′) are
the final momentum and energy of this particle; and k′

and E(k′) are the momentum and energy of the knocked-
out particle. The kinematics of the above-mentioned pro-
cess corresponds to the inequalities |k| ¿ |p|, |p′|, |k′| and
Ebind ¿ E(p), E(p′), E(k′). Thus, the values of k and
Ebind are obtained from the experiment.
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One more nuclear example are the exclusive reactions
of quasielastic knockout of nucleon clusters by protons
with energy 0.5–1 GeV such as (p, pα), etc. This reaction
may be important for the identification of de-excitation
mechanisms of the virtually excited clusters in nuclei [7].
The QEK process (e, 2e) at the beam energies of

around 10 keV is widely used in investigations of the elec-
tronic structure of atoms, molecules and solids [8,9]. So,
there exists a great experience in the investigation of the
exclusive QEK reactions.
In our previous papers [1,2,10] we used the concept of

the quasielastic knockout to the knockout of mesons from
nucleons by high-energy electrons. It demanded a relativis-
tic generalization of the theory. Namely, the t-channel pole
z-diagram reflecting a virtual creation of, say, a π+π− pair
was taken into account in addition to the t-channel pole
diagram of pion knockout (the instantaneous form of dy-
namics). The second important point mentioned there was
that it was possible to separate experimentally reactions
induced by longitudinal virtual photons γ∗L and those in-
duced by transverse virtual photons γ∗T [11]. This offers a
way [12] to investigate the MDs of pions (π+∗ + γ∗L → π+

subprocess) and the MDs of ρ-mesons (ρ+∗ + γ∗T → π+

subprocess) by means of the same p(e, e′π+)n reaction.
The quasielastic kinematics requires the squared mass of
a virtual photon Q2 to be about 2–4 (GeV/c)2. Such Q2

value is necessary to suppress the contribution of the com-
peting s-channel pole diagram which corresponds to quite
different physics and is very important when the real pho-
ton is absorbed.
In the present paper we extend this approach to the

investigation of the pionic degrees of freedom in nuclei.
The paper is organized as follows. In the second section we
outline a relativistic formalism for the QEK reactions. In
the third section we discuss the final-state interaction and
its influence on the cross-section. In the fourth section, we
present a simple expression for the MD of the collective
pions in a model based on the virtual excitation of the
∆-isobar and compare it with the MD of pions localized
on nucleons in a nucleus. In the fifth section we discuss
the advantage of the (e, e′π) process in comparison with
the (γ, π) reaction and the (π, 2π) QEK process.

2 Formalism

According to the general theory of meson electroproduc-
tion [13], the differential cross-section for the reaction
T + e → R + π+ + e′ can be presented as a sum of four
terms:

d4σ

dW 2dQ2dtdφπ
= Γ

{

ε
dσL
dt
+
dσT
dt

+
√

2ε(1 + ε)
dσLT
dt

cosφπ + ε
dσTT
dt

cos 2φπ

}

, (2)

where dσL/dt corresponds to longitudinal virtual pho-
tons, dσT /dt to transverse virtual photons, and dσLT /dt

T, p
T

R, p
R

π, k
/

π (ρ),    k

 γ, q

Fig. 1. t-pole diagram for the pion production: pT , pR are,
respectively, 4-momenta of a target particle and of a recoil
particle, k′ is the 4-momentum of the final pion, q is the
4-momentum of a virtual photon, and k is the 4-momentum
of a virtual meson.

and dσTT /dt are interference components. The experi-
mental cross-section can be separated into the longitu-
dinal, transverse, and interference components by varying
ε and φπ (Rosenbluth separation) [11]. Experimental re-
sults are usually presented in terms of dσi/dt, i = L, T ,
LT , TT .
In eq. (2), W 2 = (q + pT )

2 = (k′ + pR)
2 is the square

of the invariant mass, pT , pR are, respectively, 4-momenta
of a target particle and of a recoil particle, k′ is the
4-momentum of the final pion and q is the 4-momentum
of the virtual photon q = (q0, q) (see fig. 1); Q

2 = −q2;
t = (pR − pT )

2 = (k′ − q)2 = k2 (k = (k0,k) is the
4-momentum of a virtual meson); φπ is the angle between
the electron scattering plane and the plane spanned by
the (k′,pR) momenta; and

Γ =
α

(4π)2
W 2 −M2

T

Q2E2
eM

2
T

1

1− ε
, (3)

is the virtual-photon flux. Here Ee is the initial electron
energy,MT is a target mass,MT =MN for the process on
a free nucleon andMT =MA for the process on a nucleus.
The quantity

ε =

[

1 +
2q2

Q2
tan2 θe

2

]−1

(4)

characterizes a degree of longitudinal polarization of the
virtual photon (θe is the angle between the momenta of
incident and scattered electrons).
As we pointed out in our previous papers [1,2], the lon-

gitudinal cross-section for quasielastic kinematics is dom-
inated by the t-pole diagram fig. 1 with virtual pions
(which corresponds to the subprocess γ∗L + π∗ → π), and
the transverse cross-section is dominated by the t-pole
diagram fig. 1 with virtual ρ-mesons (the subprocess
γ∗T + ρ∗ → π). So, if we want to study the pionic cloud
of the nucleon (nucleus), we need the experimental data
on the longitudinal cross-section dσL/dt, and if we study
the ρ-mesonic cloud we need the experimental data on the
transverse cross-section dσT /dt.
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Fig. 2. Momentum distribution of pions versus −t, (GeV2/c2):
the solid curve is the MD of the delocalized pions in nuclei (per

nucleon) |ΨAπA (k)|2, (GeV/c)−3; and the dashed curve is the

washed-out MD of the localized pions in the nucleus |ΨNπ
N (k)|2,

(GeV/c)−3.

Now, let us introduce the wave function of pions [1,2]

ΨRπT (k) =
J(T → Rπ)

k0 − Eπ(k)
, (5)

where J(T → Rπ) is the amplitude of the virtual transi-

tion T → Rπ, Eπ(k) =
√

k2 +m2
π, mπ is the pion mass.

For the kinematics of quasielastic knockout the longi-
tudinal cross-section is directly proportional to the mo-
mentum distribution of pions (i.e., the squared and spin-
averaged wave function (5)) [1,2]:

dσL
dt

=
α

8

|ΨRπT (k)|2
(k0 + Eπ(k))2

1

|q(cm)|
1

W (W 2 −M2
T )

×F 2
π (Q

2)((k + k′) · eλ=0)
2, (6)

where α = 1/137; q(cm) is the virtual-photon momentum
in the center-of-mass frame,

|q(cm)| =
√

Q2 + (W 2 −Q2 −M2
T )

2/(4W 2); (7)

Fπ(Q
2) is the pion electromagnetic form factor Fπ(Q

2) =
[1 + (Q2/0.5 (GeV/c)2)]−1; eλ=0 is the photon polariza-
tion unit 4-vector for longitudinal photons, and the scalar
product is ((k + k′) · eλ=0)

2 = 4(k′0qz − q0k
′

z)
2/Q2.

The wave function (5) is normalized to the probability
of finding a pion in the channel of the virtual decay T →
R+ π (spectroscopic factor):

∫

|ΨRπT (k)|2dτ = SRπT (8)

with the integration measure

dτ = d3k/(4π)3MTEπ(k)ER(k). (9)

We have included the factor

[(4π)3MTEπ(k)ER(k)]
1/2 (10)

into the wave function, so that the wave functions pre-
sented in fig. 2 are normalized to the spectroscopic factor
with the integration measure dτ = d3k.

3 Final-state interaction

Quasielastic-knockout experiments will not provide us

with the pion momentum distribution |ΨRπ
T (k)|2 itself,

but with its distorted version [7,14] |φRπT (k′q)|2 due to
the final-state interaction (FSI) of the knocked out pion
with the residual nucleus. Namely, let us write down a
plane-wave Fourier transformation of the wave function

ΨRπT (k) =
1

(2π)3/2

∫

e−ikrΨRπT (r)d3r (11)

=
1

(2π)3/2

∫

eiqre−ik
′rΨRπT (r)d3r,

where k = k′ − q.
The electronic plane wave eiqr = ei(pe

′−pe)r as
well as the wave function of a virtual pion ΨRπ

T (r) are
not modified by the final pion-nucleus interaction, but
the FSI remarkably affects the propagation of the final
knocked-out pion in the nuclear medium. Instead of the
plane-wave function e−ik

′r we should use a distorted func-
tion Ψ (−)(k′, r). When |k′| is large enough (≥ 1 GeV/c),
we can use the eikonal approximation [15] to obtain this
function. Solving the Klein-Gordon equation in the eikonal
approximation with a simplified optical pion-nucleus po-
tential, which has the same depth U = V + iW in the
integration range of eq. (11), we obtain the distorted-wave
function of the knocked-out pion:

Ψ (−)(k′, r) = e(k
′
−(V+iW )k̂′)r. (12)

So, in eq. (11), instead of the momentum k′ we should use

a “distorted local momentum” [7] k′− (V + iW )k̂′, where

k̂′ is the unit vector k′/|k′|,

k′ → k′ − (V + iW )k̂′. (13)

The usage of such potential, which is typical for infinite
nuclear matter, is justified because the integration area
in eq. (11) is cut off due to the localized character of the
wave function of virtual pions in the nucleus ΨRπ

T (r). This
simplified consideration permits us to see directly how the
FSI affects the wave function of pions. Namely, with the
distorted-wave function of the real pion, eq. (11) takes the
form

φRπT (k
′, q) =

1

(2π)3/2

∫

eiqre−i(k
′
−V k̂′)re−W k̂′rΨRπT (r)d3r. (14)

Comparing eq. (11) and eq. (14), we can see that taking
the FSI into account results in shifting of the wave func-

tion ΨRπT (k) to the left k→ k+V k̂′ and in its damping by
a factor of the order e−WR, where R is the nuclear radius.
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In our calculations we used a square well with a finite
radius R equal to the nuclear radius. In this case, the wave
function of the knocked-out pion has the form

Ψ (−)(k′, r) = eik
′reiS(r), (15)

with

S(r) = −Eπ(k
′)

|k′|

∫

∞

z

U(b+ k̂′z′)dz′. (16)

Here b is the pion impact parameter, and z is pion’s co-
ordinate along the direction of its propagation.
Pion-nucleus optical potentials considerably depend on

the pion momentum [16,17]. But as far as the virtual-pions
momenta lie in a very narrow range (|k| changes from 0 to
0.4 GeV/c —see fig. 2) and are very small in comparison
with the final-pion momenta (|k′| is about 4–5 GeV/c (see
below)), we may use an optical potential with the same
depth for all final-pion momenta.
The parameters of the well depth at our energies

(|k′| = 4–5 GeV/c) are V = 22 MeV and W = 53
MeV [16,17]. A πA potential of this depth, having the
Woods-Saxon shape in accordance with the nucleon dis-
tribution, describes, say, the π−-40Ca scattering at 800
MeV and low scattering angles in the eikonal approxima-
tion [18].

4 Momentum distributions of pions in nuclei

The radial wave function of the collective pion appears as
the standing P -wave [4]:

Φ(r) = cj1(Kr), r ≤ R, (17)

Φ(r) = 0, r > R.

Here the collective pionic mode is characterized by the
momenta of pions K,

√

K2 +m2
π =M∆ −MN , K ' 0.3 GeV/c, (18)

M∆ and MN being the masses of the ∆-isobar and the
nucleon.
It is supposed that initial and final nuclear states have

the same parity and transitions like 0+ → 1+, 1+ → 1+,
etc. take place. The situation is close to the weak cou-
pling of pions to the nucleus. In the above equation,
R denotes the nucleus radius. The nucleus should have
A ' 70 and N ' Z to obey the qualitative estimations
of the number of collective pions in the nucleus per nu-
cleon ni,coll ≈ 0.1 [4]. This estimation corresponds to the
value c = 0.027 of the normalization constant, and the
quasielastic-knockout experiment will verify this value.
By the Fourier transformation of the single-particle wave
function (17), we obtain the MD of the collective pions

|ΨAπA (k)|2 (the squared and spin-averaged wave function
in the momentum representation). This MD is presented
in fig. 2 (solid curve). It has a sharp maximum at k = K,
i.e. it is close to the plane wave within the limitation im-
posed by the finite volume of the nucleus.

The dashed line corresponds to a washed-out MD

of the localized pions |ΨNπ
N (k)|2. The MD of the pion

in a free nucleon |ΨNπ
N (k)|2 was reconstructed from the

p(e, e′π)n experiment [11] with the quasielastic kinematics
(Q2 = 1–3 (GeV/c)2) and was presented in our previous
papers [1,2]. In order to obtain the MD of the localized
pions we should average this MD over the motion of a
nucleon in the nucleus. So, the washed-out MD of the lo-
calized pions was obtained by the convolution of the MD
of pions in a free nucleon with the averaged MD of shell

model nucleons in the nucleus |ΦA−1,N
A (p)|2:

|ΨNπ
N (k)|2 =

∫

|ΨNπ
N (k + (mπ/MN )p)|2 · |ΦA−1,N

A (p)|2dp.
(19)

The washed-out MD of the localized pions, in contrast
to the MD of the collective pions is very smooth at k
values close to K. The momentum distributions in fig. 2
are isotropic with respect to k direction, because they are
averaged over magnetic quantum numbers of the pionic
P -orbital.
The knockout of the delocalized collective pions is ac-

companied by recoil to the final nucleus as a whole, with
a very small recoil energy Erec,A ' K2/2MA < 1 MeV
(A ' 70–80), although the momentumK itself is not small
(see eq. (4)). The wave function of pions (17) does not con-
tain pion-nucleon spatial correlations and, as a result, the
final recoil nucleus will not be internally excited. In fact,
the best experimental energy resolution ∆E at present
may be around 10 MeV here. The real situation will cor-
respond to the summation over many excited states of
external shells of the final nucleus, i.e. to a sum rule.
At the same time, knockout of pions with the same

virtual momentum k, k ' K from the pion cloud of
an individual nucleon will be characterized by a large
value of the recoil energy transferred to one nucleon,
Erec,N ' K2/2MN ' 50 MeV. This nucleon, with a high
probability, will be directly emitted from the nucleus (we
mean here the numerous weakly bound nucleons of the ex-
ternal shell). A reliable identification of this event requires
triple coincidences e′ + π− + p, which is an urgent exper-
imental problem now. In a noncomplete experiment with
only double coincidences e′ + π−, the above-mentioned
event will be perceived as a high excitation (ω ' 50 MeV)
of the final recoil nucleus accompanied by transfer of the
momentum −k, k ' K to this nucleus. This group of
events will show a very smooth MD of virtual pions like
the corresponding part of the dashed line in fig. 2 at k
around K. The discussed n → p transformation with the
recoil to the proton and the corresponding appearance of
a particle-hole pair in the process of the π− knockout from
the nucleus may also create one of the charged nuclear gi-
ant resonances with the excitation energy ω of a few tens
of MeV. An intriguing new opportunity here is to investi-
gate the k-dependence of such cross-sections.
Figure 3 represents the influence of the final-state in-

teraction on the cross-section in the case of delocalized
pions. As we have mentioned above, the final-state inter-
action causes shifting and damping of the cross-section.
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Fig. 3. Influence of the final-state interaction on the cross-
section. Longitudinal cross-section dσL/dt, (mb/GeV2), ver-

sus |t|, (GeV/c)2 for delocalized pions. Q2 = 1 (GeV/c)2,

q
(lab.s.)
0 = 4.86 GeV. The solid line corresponds to the cal-
culation involving the final-state interaction, and the dashed
line, to the plane-wave approximation.
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Fig. 4. Longitudinal cross-section dσL/dt, (mb/GeV2), versus

|t|, (GeV/c)2. Q2 = 1 (GeV/c)2, q
(lab.s.)
0 = 4.86 GeV. The

dashed line corresponds to localized pions, and the solid line,
to delocalized pions. The final-state interaction is taken into
account.

However, taking the interaction into account does not dis-
tort the cross-sections dramatically, so we are still able to
discriminate between the two kinds of pions in the nucleus.

Theoretically predicted cross-sections for the both
cases (localized and delocalized pions), with the final-state
interaction taken into account, are shown in fig. 4. Note
that the cross-section eq. (6) is calculated with the wave
function of pions (5), which obey eq. (8). So, calculating
the cross-section with the collective-pion wave function
(17), this radial wave function should be divided by

√
4π

and by the factor (10).

The above discussion should be complemented by a
remark about the minimal value of t available in the ex-
periment with the given values of Q2 and q0. Namely, from
the expression t = −k2 = −(k′− q)2 we obtain for the co-
sine of the angle between k′ and q

cos θ =
−t−m2

π +Q2 + 2q0(q0 − t/2MT )

2|q|
√

(q0 − t/2MT )2 −m2
π

'

−t+Q2 + 2q20
2|q|q0

. (20)

The condition | cos θ| ≤ 1 determines the range of physical
t values. This gives the minimal t

tmin ' (|q| − q0)
2. (21)

In the case of virtual pions this formula gives the following
expression for the minimal momentum of the virtual pion:

|k|min '
Q2

2|k′| . (22)

Figure 2 shows that all characteristic features of the
MD of delocalized pions lie in the region of small t
(t < 0.1 (GeV/c)2). The smaller tmin we want to achieve,
the smaller the difference |q| − q0 should be. At the
same time, Q2 and q0 should be large enough to provide
the kinematics of quasielastic knockout. For example, if
tmin ' 0.01 (GeV/c)2, we can choose Q2 = 1 (GeV/c)2

and q0 ' 5 GeV/c.
The principal result of this section is that the high-

energy pion electroproduction on nuclei by means of the
virtual longitudinal photons γ∗L within the kinematics of
the QEK process at small ω values of a few MeV offers an
opportunity to see the cooperative, maximally delocalized
pions in nuclei in the most direct way. The bright MD
maximum at k ' K ' 0.3 GeV/c (the solid line in fig. 4)
will be the principal indication of the presence of such
pions in the nucleus. The increase of ω corresponds, qual-
itatively, to the increase of localization of the discussed
virtual pions in the nucleus. The shape of the MD mea-
sured at different ω may be helpful for the clarification of
the evolution of the reaction mechanism (the usage of the
triple coincidence would be very important here, too).
It should be noted, that the final energy of a knocked-

out pion should not be lower than 1 GeV to avoid dis-
turbing influence of the intermediate resonance (∆-isobar)
in the πA final-state interaction. Energies significantly
higher than 1 GeV are not suitable either, because they
represent different physics of asymptotical quark counting
rules [19]. This physics, which corresponds to the Q2 val-
ues of 10–20 (GeV/c)2 and rather small cross-sections, is
very popular now [20]. But our region of the soft hadronic
degrees of freedom in the nucleons and nuclei, which corre-
sponds to rather moderate Q2 values of 1–4 (GeV/c)2 and
which is still in the shadow, is not less interesting. In ad-
dition, it corresponds to quite measurable cross-sections.

5 Conclusion

In this paper we have shown that the reaction of pion
quasielastic knockout from nucleus by high-energy elec-
trons is an efficient tool to discriminate between the MD
of delocalized pions corresponding to collective models of
pion condensate, and the MD of pions localized on nu-
cleons in the nucleus. We have shown that the final-state
interaction between the knocked-out pion and the residual
nucleus-spectator does not reduce significantly the sensi-
tivity of the differential cross-section to the shape of the
pionic MD. It is expected that the spectra of excitation
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energies of the final nucleus-spectator, ω, will also be dif-
ferent in these two cases.
Recently, the investigation of the (π, 2π) quasi-

elastic-knockout process has been initiated [21], although
the energies of the pions are not yet high enough. The
cross-sections here are larger (strong interaction) than
those for the (e, e′π) reaction, and the (π, 2π) reaction
gives an opportunity to investigate the π0-component of
the collective field. However distortion and absorption ef-
fects [22] for three pionic waves in the (π, 2π) reaction are
much more pronounced than those for one pionic wave in
the (e, e′π) process. These two reactions, the (e, e′π) reac-
tion of volume character with smaller cross-sections and
the (π, 2π) reaction of surface character with larger cross-
sections, may complement each other rather efficiently.
Finally, it should be noted, that the process of pion

photoproduction (γ, π) on nuclei (Q2 = 0) is described by
the interference of a number of amplitudes corresponding
to different diagrams [23] and does not offer a direct way
for extracting the MDs of pions in nuclei.

The authors are grateful to Profs. A.A. Ogloblin and
B.S. Slowinsky for their lively interest in the discussed prob-
lems. This work is supported by the Russian Foundation of
Basic Research (grant No. 03-02-17394).
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